良许Linux教程网 干货合集 SPI可以使用UART通信协议吗?

SPI可以使用UART通信协议吗?

最近有一位读者问了一个相似的问题:”能否在SPI中使用自定义的UART通信协议?”

基本上来说,只要通信协议与底层通信接口(硬件)没有直接的耦合关系,是可以实现的。

例如,我们可以使用适用于串口的MAVLink通信协议,在之前我制作的产品中,我们甚至直接使用了CAN总线进行通信,同样也是可行的。这就展示了在不同的硬件接口上可以采用不同的通信协议的灵活性。

什么通信协议?

通信协议不难理解,就是两个(或多个)设备之间进行通信,必须要遵循的一种协议。

百度百科的解释:

通信协议是指双方实体完成通信或服务所必须遵循的规则和约定。通过通信信道和设备互连起来的多个不同地理位置的数据通信系统,要使其能协同工作实现信息交换和资源共享,它们之间必须具有共同的语言。交流什么、怎样交流及何时交流,都必须遵循某种互相都能接受的规则。这个规则就是通信协议。

相应该有很多读者都买过一些基于串口通信的模块,市面上很多基于串口通信的模块都是自定义通信协议,有的比较简单,有的相对复杂一点。

举一个很简单的串口通信协议的例子:比如只传输一个温度值,只有三个字节的通信协议:

帧头 温度值 帧尾
5A 一字节数值 3B

这种看起来是不是很简单?它也是一种通信协议。

只是说这种通信协议应用的场合相对比较简单(一对一两个设备之间),同时,它存在很多弊端。

过于简单的通信协议引发的问题

上面那种只有三个字节的通信协议,相信大家都看明白了。虽然它也能通信,也能传输数据,但它存在一系列的问题。

比如:多个设备连接在一条总线(比如485)上,怎么判断传输给谁?(没有设备信息)

还比如:处于一个干扰环境,你能保障传输数据正确吗?(没有校验信息)

再比如:我想传输多个不确定长度的数据,该怎么办?(没有长度信息)。

上面这一系列问题,相信做过自定义通信的朋友都了解。

所以,在通信协议里面要约定更多的“协议信息”,这样才能保证通信的完整。

通信协议常见内容

基于串口的通信协议通常不能太复杂,因为串口通信速率、抗干扰能力以及其他各方面原因,相对于TCP/IP这种通信协议,是一种很轻量级的通信协议。

所以,基于串口的通信,除了一些通用的通信协议(比如:Modubs、MAVLink)之外,很多时候,工程师都会根据自己项目情况,自定义通信协议。

下面简单描述下常见自定义通信协议的一些要点内容。

image-20230724222131099
image-20230724222131099

(这是一些常见的协议内容,可能不同情况,其协议内容不同)

1.帧头

帧头,就是一帧通信数据的开头。

有的通信协议帧头只有一个,有的有两个,比如:5A、A5作为帧头。

image-20230724222134218
image-20230724222134218

2.设备地址/类型

设备地址或者设备类型,通常是用于多种设备之间,为了方便区分不同设备。

image-20230724222136822
image-20230724222136822

这种情况,需要在协议或者附录中要描述各种设备类型信息,方便开发者编码查询。

当然,有些固定的两种设备之间通信,可能没有这个选项。

3.命令/指令

命令/指令比较常见,一般是不同的操作,用不同的命令来区分。

image-20230724222139461
image-20230724222139461

举例:温度:0x01;湿度:0x02;

4.命令类型/功能码

这个选项对命令进一步补充。比如:读、写操作。

image-20230724222142261
image-20230724222142261

举例:读Flash:0x01; 写Flash:0x02;

5.数据长度

数据长度这个选项,可能有的协议会把该选项提到前面设备地址位置,把命令这些信息算在“长度”里面。

这个主要是方便协议(接收)解析的时候,统计接收数据长度。

image-20230724222144898
image-20230724222144898

比如:有时候传输一个有效数据,有时候要传输多个有效数据,甚至传输一个数组的数据。这个时候,**传输的一帧数据就是不定长数据****,就必须要有**【**数据长度*】*来约束。

有的长度是一个字节,其范围:0x01 ~ 0xFF,有的可能要求一次性传输更多,就用两个字节表示,其范围0x0001 ~ 0xFFFFF。

当然,有的通信长度是固定的长度(比如固定只传输、温度、湿度这两个数据),其协议可能没有这个选项。

6.数据

数据就不用描述了,就是你传输的实实在在的数据,比如温度:25℃。

7.帧尾

有些协议可能没有帧尾,这个应该是可有可无的一个选项。

8.校验码

校验码是一个比较重要的内容,一般正规一点的通信协议都有这个选项,原因很简单,通信很容易受到干扰,或者其他原因,导致传输数据出错。

如果有校验码,就能比较有效避免数据传输出错的的情况。

image-20230724222147875
image-20230724222147875

校验码的方式有很多,校验和、CRC校验算是比较常见的,用于自定义协议中的校验方式。

还有一点,有的协议可能把校验码放在倒数第二,帧尾放在最后位置。

通信协议代码实现

自定义通信协议,代码实现的方式有很多种,怎么说呢,“条条大路通罗马”你只需要按照你协议要写实现代码就行。

当然,实现的同时,需要考虑你项目实际情况,比如通信数据比较多,要用消息队列(FIFO),还比如,如果协议复杂,最好封装结构体等。

下面分享一些以前用到的代码,可能没有描述更多细节,但一些思想可以借鉴。

1.消息数据发送

**a.通过串口*直接*发送每一个字节

这种对于新手来说都能理解,这里分享一个之前DGUS串口屏的例子:

#define DGUS_FRAME_HEAD1          0xA5                     //DGUS屏帧头

1
#define DGUS_FRAME_HEAD2          0x5A                     //DGUS屏帧头

2

#define DGUS_CMD_W_REG            0x80                     //DGUS写寄存器指令


#define DGUS_CMD_R_REG            0x81                     //DGUS读寄存器指令


#define DGUS_CMD_W_DATA           0x82                     //DGUS写数据指令


#define DGUS_CMD_R_DATA           0x83                     //DGUS读数据指令


#define DGUS_CMD_W_CURVE          0x85                     //DGUS写曲线指令



/* DGUS寄存器地址 */
#define DGUS_REG_VERSION          0x00                     //DGUS版本




#define DGUS_REG_LED_NOW          0x01                     //LED背光亮度


#define DGUS_REG_BZ_TIME          0x02                     //蜂鸣器时长


#define DGUS_REG_PIC_ID           0x03                     //显示页面

ID
#define DGUS_REG_TP_FLAG          0x05                     //触摸坐标更新标志


#define DGUS_REG_TP_STATUS        0x06                     //坐标状态


#define DGUS_REG_TP_POSITION      0x07                     //坐标位置


#define DGUS_REG_TPC_ENABLE       0x0B                     //触控使能


#define DGUS_REG_RTC_NOW          0x20                     //当前RTCS



//往DGDS屏指定寄存器写一字节数据
void DGUS_REG_WriteWord(uint8_t RegAddr, uint16_t Data)
{
  DGUS_SendByte(DGUS_FRAME_HEAD1);
  DGUS_SendByte(DGUS_FRAME_HEAD2);
  DGUS_SendByte(0x04);

  DGUS_SendByte(DGUS_CMD_W_REG);                 //指令
  DGUS_SendByte(RegAddr);                        //地址

  DGUS_SendByte((uint8_t)(Data>>8));             //数据
  DGUS_SendByte((uint8_t)(Data&0xFF));
}

//往DGDS屏指定地址写一字节数据
void DGUS_DATA_WriteWord(uint16_t DataAddr, uint16_t Data)
{
  DGUS_SendByte(DGUS_FRAME_HEAD1);
  DGUS_SendByte(DGUS_FRAME_HEAD2);
  DGUS_SendByte(0x05);

  DGUS_SendByte(DGUS_CMD_W_DATA);                //指令

  DGUS_SendByte((uint8_t)(DataAddr>>8));         //地址
  DGUS_SendByte((uint8_t)(DataAddr&0xFF));

  DGUS_SendByte((uint8_t)(Data>>8));             //数据
  DGUS_SendByte((uint8_t)(Data&0xFF));
}

b.通过消息队列发送

在上面基础上,用一个buf装下消息,然后“打包”到消息队列,通过消息队列的方式(FIFO)发送出去。**

#define DGUS_FRAME_HEAD1          0xA5                     //DGUS屏帧头

1
#define DGUS_FRAME_HEAD2          0x5A                     //DGUS屏帧头

2

#define DGUS_CMD_W_REG            0x80                     //DGUS写寄存器指令


#define DGUS_CMD_R_REG            0x81                     //DGUS读寄存器指令


#define DGUS_CMD_W_DATA           0x82                     //DGUS写数据指令


#define DGUS_CMD_R_DATA           0x83                     //DGUS读数据指令


#define DGUS_CMD_W_CURVE          0x85                     //DGUS写曲线指令



/* DGUS寄存器地址 */
#define DGUS_REG_VERSION          0x00                     //DGUS版本


#define DGUS_REG_LED_NOW          0x01                     //LED背光亮度


#define DGUS_REG_BZ_TIME          0x02                     //蜂鸣器时长


#define DGUS_REG_PIC_ID           0x03                     //显示页面

ID
#define DGUS_REG_TP_FLAG          0x05                     //触摸坐标更新标志


#define DGUS_REG_TP_STATUS        0x06                     //坐标状态


#define DGUS_REG_TP_POSITION      0x07                     //坐标位置


#define DGUS_REG_TPC_ENABLE       0x0B                     //触控使能


#define DGUS_REG_RTC_NOW          0x20                     //当前RTCS

//往DGDS屏指定寄存器写一字节数据
void DGUS_REG_WriteWord(uint8_t RegAddr, uint16_t Data)
{
  DGUS_SendByte(DGUS_FRAME_HEAD1);
  DGUS_SendByte(DGUS_FRAME_HEAD2);
  DGUS_SendByte(0x04);

  DGUS_SendByte(DGUS_CMD_W_REG);                 //指令
  DGUS_SendByte(RegAddr);                        //地址

  DGUS_SendByte((uint8_t)(Data>>8));             //数据
  DGUS_SendByte((uint8_t)(Data&0xFF));
}

//往DGDS屏指定地址写一字节数据
void DGUS_DATA_WriteWord(uint16_t DataAddr, uint16_t Data)
{
  DGUS_SendByte(DGUS_FRAME_HEAD1);
  DGUS_SendByte(DGUS_FRAME_HEAD2);
  DGUS_SendByte(0x05);

  DGUS_SendByte(DGUS_CMD_W_DATA);                //指令

  DGUS_SendByte((uint8_t)(DataAddr>>8));         //地址
  DGUS_SendByte((uint8_t)(DataAddr&0xFF));

  DGUS_SendByte((uint8_t)(Data>>8));             //数据
  DGUS_SendByte((uint8_t)(Data&0xFF));
}

**c.用“结构体**”**代替*“*数组SendBuf”方式

结构体对数组更方便引用,也方便管理,所以,结构体方式相比数组buf更高级,也更实用。(当然,如果成员比较多,如果用临时变量方式也会导致占用过多堆栈的情况)

比如:

typedef struct
{
  uint8_t  Head1;                 //帧头1
  uint8_t  Head2;                 //帧头2
  uint8_t  Len;                   //长度
  uint8_t  Cmd;                   //命令
  uint8_t  Data[DGUS_DATA_LEN];   //数据
  uint16_t CRC16;                 //CRC校验
}DGUS_PACKAGE_TypeDef;

d.其他更多

串口发送数据的方式有很多,比如用DMA的方式替代消息队列的方式。

2.消息数据接收

串口消息接收,通常串口中断接收的方式居多,当然,也有很少情况用轮询的方式接收数据。

a.常规中断接收

还是以DGUS串口屏为例,描述一种简单又常见的中断接收方式

void DGUS_ISRHandler(uint8_t Data)
{
  static uint8_t sDgus_RxNum = 0;                //数量
  static uint8_t sDgus_RxBuf[DGUS_PACKAGE_LEN];
  static portBASE_TYPE xHigherPriorityTaskWoken = pdFALSE;

  sDgus_RxBuf[gDGUS_RxCnt] = Data;
  gDGUS_RxCnt++;

  /* 判断帧头 */
  if(sDgus_RxBuf[0] != DGUS_FRAME_HEAD1)       //接收到帧头1
  {
    gDGUS_RxCnt = 0;
    return;
  }
  if((2 == gDGUS_RxCnt) && (sDgus_RxBuf[1] != DGUS_FRAME_HEAD2))
  {
    gDGUS_RxCnt = 0;
    return;
  }

  /* 确定一帧数据长度 */
  if(gDGUS_RxCnt == 3)
  {
    sDgus_RxNum = sDgus_RxBuf[2] + 3;
  }

  /* 接收完一帧数据 */
  if((6 if(xDGUSRcvQueue != NULL)                    //解析成功, 加入队列
    {
      xQueueSendFromISR(xDGUSRcvQueue, &sDgus_RxBuf[0], &xHigherPriorityTaskWoken);
      portEND_SWITCHING_ISR(xHigherPriorityTaskWoken);
    }
  }
}

b.增加超时检测

接收数据有可能存在接收了一半,中断因为某种原因中断了,这时候,超时检测也很有必要。

比如:用多余的MCU定时器做一个超时计数的处理,接收到一个数据,开始计时,超过1ms没有接收到下一个数据,就丢掉这一包(前面接收的)数据。

void DGUS_ISRHandler(uint8_t Data)
{
  static uint8_t sDgus_RxNum = 0;                //数量
  static uint8_t sDgus_RxBuf[DGUS_PACKAGE_LEN];
  static portBASE_TYPE xHigherPriorityTaskWoken = pdFALSE;

  sDgus_RxBuf[gDGUS_RxCnt] = Data;
  gDGUS_RxCnt++;

  /* 判断帧头 */
  if(sDgus_RxBuf[0] != DGUS_FRAME_HEAD1)       //接收到帧头1
  {
    gDGUS_RxCnt = 0;
    return;
  }
  if((2 == gDGUS_RxCnt) && (sDgus_RxBuf[1] != DGUS_FRAME_HEAD2))
  {
    gDGUS_RxCnt = 0;
    return;
  }

  /* 确定一帧数据长度 */
  if(gDGUS_RxCnt == 3)
  {
    sDgus_RxNum = sDgus_RxBuf[2] + 3;
  }

  /* 接收完一帧数据 */
  if((6 if(xDGUSRcvQueue != NULL)                    //解析成功, 加入队列
    {
      xQueueSendFromISR(xDGUSRcvQueue, &sDgus_RxBuf[0], &xHigherPriorityTaskWoken);
      portEND_SWITCHING_ISR(xHigherPriorityTaskWoken);
    }
  }
}

c.更多

接收和发送一样,实现方法有很多种,比如接收同样也可以用结构体方式。但有一点,都需要结合你实际需求来编码。

总结

以上自定义协议内容仅供参考,最终用哪些、占用几个字节都与你实际需求有关。

**
**

基于串口的自定义通信协议,有千差万别,比如:MCU处理能力、设备多少、通信内容等都与你自定义协议有关。

有的可能只需要很简单的通信协议就能满足要求。有的可能需要更复杂的协议才能满足。

最后强调两点:

1.以上举例并不是完整的代码(有些细节没有描述出来),主要是供大家学习这种编程思想,或者实现方式。

2.一份好的通信协议代码,必定有一定容错处理,比如:发送完成检测、接收超时检测、数据出错检测等等。所以说,以上代码并不是完整的代码。

以上就是良许教程网为各位朋友分享的Linu系统相关内容。想要了解更多Linux相关知识记得关注公众号“良许Linux”,或扫描下方二维码进行关注,更多干货等着你 !

137e00002230ad9f26e78-265x300
本文由 良许Linux教程网 发布,可自由转载、引用,但需署名作者且注明文章出处。如转载至微信公众号,请在文末添加作者公众号二维码。
良许

作者: 良许

良许,世界500强企业Linux开发工程师,公众号【良许Linux】的作者,全网拥有超30W粉丝。个人标签:创业者,CSDN学院讲师,副业达人,流量玩家,摄影爱好者。
上一篇
下一篇

发表评论

联系我们

联系我们

公众号:良许Linux

在线咨询: QQ交谈

邮箱: yychuyu@163.com

关注微信
微信扫一扫关注我们

微信扫一扫关注我们

关注微博
返回顶部