存储器直接访问(Direct Memory Access,DMA)是CPU用于将数据从一个地址空间复制到另一个地址空间的组件,该过程不需要CPU的干预,数据复制完成后通知CPU进行处理。因此,在大量数据拷贝时,使用DMA可以释放CPU资源。DMA数据拷贝过程典型的应用场景包括内存到内存、外围设备到内存(例如uart、spi、i2c等总线接收数据过程)、内存到外围设备(例如uart、spi、i2c等总线发送数据过程)。
然而,对于波特率小于或等于115200bps且数据量不大的通信场景,通常没有必要使用DMA,因为使用DMA并未能充分发挥DMA的作用。但是,在数量大或波特率提高的情况下,必须使用DMA以释放CPU资源。这是因为在高波特率下可能存在以下问题:
- 
对于发送操作,循环发送可能会阻塞线程,需要耗费大量CPU资源进行数据传输,造成CPU浪费。 
- 
对于发送操作,中断发送不会阻塞线程,但需要浪费大量中断资源,CPU需要频繁响应中断。在115200bps波特率下,1秒可以传输11520字节,大约每69微秒响应一次中断。当波特率再增加时,将花费更多的CPU资源。 
- 
对于接收操作,如果继续使用传统的中断模式接收,同样会因频繁中断而消耗大量CPU资源。 
因此,在高波特率场景下,串口非常需要使用DMA。
3 实现方式

整体设计图
4 STM32串口使用DMA
关于STM32串口使用DMA,不乏一些开发板例程及网络上一些博主的使用教程。使用步骤、流程、配置基本大同小异,正确性也没什么毛病,但都是一些基本的Demo例子,作为学习过程没问题;实际项目使用缺乏严谨性,数据量大时可能导致数据异常。
测试平台:
- 
STM32F030C8T6 
- 
UART1/UART2 
- 
DMA1 Channel2—Channel5 
- 
ST标准库 
- 
主频48MHz(外部12MHz晶振) 

在这里插入图片描述
5 串口DMA接收
5.1 基本流程

串口接收流程图
5.2 相关配置
关键步骤
【1】初始化串口
【2】使能串口DMA接收模式,使能串口空闲中断
【3】配置DMA参数,使能DMA通道buf半满(传输一半数据)中断、buf溢满(传输数据完成)中断
为什么需要使用DMA 通道buf半满中断?
很多串口DMA模式接收的教程、例子,基本是使用了“空间中断”+“DMA传输完成中断”来接收数据。
实质上这是存在风险的,当DMA传输数据完成,CPU介入开始拷贝DMA通道buf数据,如果此时串口继续有数据进来,DMA继续搬运数据到buf,就有可能将数据覆盖,因为DMA数据搬运是不受CPU控制的,即使你关闭了CPU中断。
严谨的做法需要做双buf,CPU和DMA各自一块内存交替访问,即是”乒乓缓存” ,处理流程步骤应该是这样:
【1】第一步,DMA先将数据搬运到buf1,搬运完成通知CPU来拷贝buf1数据
【2】第二步,DMA将数据搬运到buf2,与CPU拷贝buf1数据不会冲突
【3】第三步,buf2数据搬运完成,通知CPU来拷贝buf2数据
【4】执行完第三步,DMA返回执行第一步,一直循环

双缓存DMA数据搬运过程
STM32F0系列DMA不支持双缓存(以具体型号为准)机制,但提供了一个buf"半满中断"。
即是数据搬运到buf大小的一半时,可以产生一个中断信号。基于这个机制,我们可以实现双缓存功能,只需将buf空间开辟大一点即可。
【1】第一步,DMA将数据搬运完成buf的前一半时,产生“半满中断”,CPU来拷贝buf前半部分数据
【2】第二步,DMA继续将数据搬运到buf的后半部分,与CPU拷贝buf前半部数据不会冲突
【3】第三步,buf后半部分数据搬运完成,触发“溢满中断”,CPU来拷贝buf后半部分数据
【4】执行完第三步,DMA返回执行第一步,一直循环

使用半满中断DMA数据搬运过程
UART2 DMA模式接收配置代码如下,与其他外设使用DMA的配置基本一致,留意关键配置:
- 
串口接收,DMA通道工作模式设为连续模式 
- 
使能DMA通道接收buf半满中断、溢满(传输完成)中断 
- 
启动DMA通道前清空相关状态标识,防止首次传输错乱数据 
左右滑动查看全部代码>>>
void bsp_uart2_dmarx_config(uint8_t *mem_addr, uint32_t mem_size)
{
   DMA_InitTypeDef DMA_InitStructure;
 
 DMA_DeInit(DMA1_Channel5); 
 DMA_Cmd(DMA1_Channel5, DISABLE);
 DMA_InitStructure.DMA_PeripheralBaseAddr  = (uint32_t)&(USART2->RDR);/* UART2接收数据地址 */
 DMA_InitStructure.DMA_MemoryBaseAddr   = (uint32_t)mem_addr; /* 接收buf */
 DMA_InitStructure.DMA_DIR      = DMA_DIR_PeripheralSRC;  /* 传输方向:外设->内存 */
 DMA_InitStructure.DMA_BufferSize    = mem_size; /* 接收buf大小 */
 DMA_InitStructure.DMA_PeripheralInc   = DMA_PeripheralInc_Disable; 
 DMA_InitStructure.DMA_MemoryInc    = DMA_MemoryInc_Enable; 
 DMA_InitStructure.DMA_PeripheralDataSize  = DMA_PeripheralDataSize_Byte; 
 DMA_InitStructure.DMA_MemoryDataSize   = DMA_MemoryDataSize_Byte;
 DMA_InitStructure.DMA_Mode      = DMA_Mode_Circular; /* 连续模式 */
 DMA_InitStructure.DMA_Priority     = DMA_Priority_VeryHigh; 
 DMA_InitStructure.DMA_M2M      = DMA_M2M_Disable; 
 DMA_Init(DMA1_Channel5, &DMA_InitStructure); 
 DMA_ITConfig(DMA1_Channel5, DMA_IT_TC|DMA_IT_HT|DMA_IT_TE, ENABLE);/* 使能DMA半满、溢满、错误中断 */
 DMA_ClearFlag(DMA1_IT_TC5); /* 清除相关状态标识 */
 DMA_ClearFlag(DMA1_IT_HT5);
 DMA_Cmd(DMA1_Channel5, ENABLE); 
}
DMA 错误中断
“DMA_IT_TE”,一般用于前期调试使用,用于检查DMA出现错误的次数,发布软件可以不使能该中断。
5.3 接收处理
基于上述描述机制,DMA方式接收串口数据,有三种中断场景需要CPU去将buf数据拷贝到fifo中,分别是:
- 
DMA通道buf溢满(传输完成)场景 
- 
DMA通道buf半满场景 
- 
串口空闲中断场景 
前两者场景,前面文章已经描述。串口空闲中断指的是,数据传输完成后,串口监测到一段时间内没有数据进来,则触发产生的中断信号。
5.3 .1 接收数据大小
数据传输过程是随机的,数据大小也是不定的,存在几类情况:
- 
数据刚好是DMA接收buf的整数倍,这是理想的状态 
- 
数据量小于DMA接收buf或者小于接收buf的一半,此时会触发串口空闲中断 
因此,我们需根据“DMA通道buf大小”、“DMA通道buf剩余空间大小”、“上一次接收的总数据大小”来计算当前接收的数据大小。
/* 获取DMA通道接收buf剩余空间大小 */
uint16_t DMA_GetCurrDataCounter(DMA_Channel_TypeDef* DMAy_Channelx);
DMA通道buf溢满场景计算
接收数据大小 = DMA通道buf大小 - 上一次接收的总数据大小
DMA通道buf溢满中断处理函数:
左右滑动查看全部代码>>>
void uart_dmarx_done_isr(uint8_t uart_id)
{
   uint16_t recv_size;
 
 recv_size = s_uart_dev[uart_id].dmarx_buf_size - s_uart_dev[uart_id].last_dmarx_size;
 fifo_write(&s_uart_dev[uart_id].rx_fifo, 
       (const uint8_t *)&(s_uart_dev[uart_id].dmarx_buf[s_uart_dev[uart_id].last_dmarx_size]), recv_size);
 s_uart_dev[uart_id].last_dmarx_size = 0;
}
DMA通道buf半满场景计算
接收数据大小 = DMA通道接收总数据大小 - 上一次接收的总数据大小
DMA通道接收总数据大小 = DMA通道buf大小 - DMA通道buf剩余空间大小
DMA通道buf半满中断处理函数:
左右滑动查看全部代码>>>
void uart_dmarx_half_done_isr(uint8_t uart_id)
{
   uint16_t recv_total_size;
   uint16_t recv_size;
 
 if(uart_id == 0)
 {
    recv_total_size = s_uart_dev[uart_id].dmarx_buf_size - bsp_uart1_get_dmarx_buf_remain_size();
 }
 else if (uart_id == 1)
 {
  recv_total_size = s_uart_dev[uart_id].dmarx_buf_size - bsp_uart2_get_dmarx_buf_remain_size();
 }
 recv_size = recv_total_size - s_uart_dev[uart_id].last_dmarx_size;
 
 fifo_write(&s_uart_dev[uart_id].rx_fifo, 
       (const uint8_t *)&(s_uart_dev[uart_id].dmarx_buf[s_uart_dev[uart_id].last_dmarx_size]), recv_size);
 s_uart_dev[uart_id].last_dmarx_size = recv_total_size;/* 记录接收总数据大小 */
}
串口空闲中断场景计算
串口空闲中断场景的接收数据计算与“DMA通道buf半满场景”计算方式是一样的。
串口空闲中断处理函数:
左右滑动查看全部代码>>>
void uart_dmarx_idle_isr(uint8_t uart_id)
{
   uint16_t recv_total_size;
   uint16_t recv_size;
 
 if(uart_id == 0)
 {
    recv_total_size = s_uart_dev[uart_id].dmarx_buf_size - bsp_uart1_get_dmarx_buf_remain_size();
 }
 else if (uart_id == 1)
 {
  recv_total_size = s_uart_dev[uart_id].dmarx_buf_size - bsp_uart2_get_dmarx_buf_remain_size();
 }
 recv_size = recv_total_size - s_uart_dev[uart_id].last_dmarx_size;
 s_UartTxRxCount[uart_id*2+1] += recv_size;
 fifo_write(&s_uart_dev[uart_id].rx_fifo, 
       (const uint8_t *)&(s_uart_dev[uart_id].dmarx_buf[s_uart_dev[uart_id].last_dmarx_size]), recv_size);
 s_uart_dev[uart_id].last_dmarx_size = recv_total_size;
}
注:串口空闲中断处理函数,除了将数据拷贝到串口接收fifo中,还可以增加特殊处理,如作为串口数据传输完成标识、不定长度数据处理等等。
5.3.2 接收数据偏移地址
将有效数据拷贝到fifo中,除了需知道有效数据大小外,还需知道数据存储于DMA 接收buf的偏移地址。
有效数据偏移地址只需记录上一次接收的总大小即,可,在DMA通道buf全满中断处理函数将该值清零,因为下一次数据将从buf的开头存储。
在DMA通道buf溢满中断处理函数中将数据偏移地址清零:
void uart_dmarx_done_isr(uint8_t uart_id)
{
  /* todo */
 s_uart_dev[uart_id].last_dmarx_size = 0;
}
5.4 应用读取串口数据方法
经过前面的处理步骤,已将串口数据拷贝至接收fifo,应用程序任务只需从fifo获取数据进行处理。前提是,处理效率必须大于DAM接收搬运数据的效率,否则导致数据丢失或者被覆盖处理。
6 串口DMA发送
6.1 基本流程

串口发送流程图
6.2 相关配置
关键步骤
【1】初始化串口
【2】使能串口DMA发送模式
【3】配置DMA发送通道,这一步无需在初始化设置,有数据需要发送时才配置使能DMA发送通道
UART2 DMA模式发送配置代码如下,与其他外设使用DMA的配置基本一致,留意关键配置:
- 
串口发送是,DMA通道工作模式设为单次模式(正常模式),每次需要发送数据时重新配置DMA 
- 
使能DMA通道传输完成中断,利用该中断信息处理一些必要的任务,如清空发送状态、启动下一次传输 
- 
启动DMA通道前清空相关状态标识,防止首次传输错乱数据 
左右滑动查看全部代码>>>
void bsp_uart2_dmatx_config(uint8_t *mem_addr, uint32_t mem_size)
{
   DMA_InitTypeDef DMA_InitStructure;
 
 DMA_DeInit(DMA1_Channel4);
 DMA_Cmd(DMA1_Channel4, DISABLE);
 DMA_InitStructure.DMA_PeripheralBaseAddr  = (uint32_t)&(USART2->TDR);/* UART2发送数据地址 */
 DMA_InitStructure.DMA_MemoryBaseAddr   = (uint32_t)mem_addr;  /* 发送数据buf */
 DMA_InitStructure.DMA_DIR      = DMA_DIR_PeripheralDST;  /* 传输方向:内存->外设 */
 DMA_InitStructure.DMA_BufferSize    = mem_size;    /* 发送数据buf大小 */
 DMA_InitStructure.DMA_PeripheralInc   = DMA_PeripheralInc_Disable; 
 DMA_InitStructure.DMA_MemoryInc    = DMA_MemoryInc_Enable; 
 DMA_InitStructure.DMA_PeripheralDataSize  = DMA_PeripheralDataSize_Byte; 
 DMA_InitStructure.DMA_MemoryDataSize   = DMA_MemoryDataSize_Byte;
 DMA_InitStructure.DMA_Mode      = DMA_Mode_Normal;   /* 单次模式 */
 DMA_InitStructure.DMA_Priority     = DMA_Priority_High;  
 DMA_InitStructure.DMA_M2M      = DMA_M2M_Disable; 
 DMA_Init(DMA1_Channel4, &DMA_InitStructure);  
 DMA_ITConfig(DMA1_Channel4, DMA_IT_TC|DMA_IT_TE, ENABLE); /* 使能传输完成中断、错误中断 */
 DMA_ClearFlag(DMA1_IT_TC4); /* 清除发送完成标识 */
 DMA_Cmd(DMA1_Channel4, ENABLE); /* 启动DMA发送 */
}
6.3 发送处理
串口待发送数据存于发送fifo中,发送处理函数需要做的的任务就是循环查询发送fifo是否存在数据,如存在则将该数据拷贝到DMA发送buf中,然后启动DMA传输。
前提是需要等待上一次DMA传输完毕,即是DMA接收到DMA传输完成中断信号"DMA_IT_TC"。
串口发送处理函数:
左右滑动查看全部代码>>>
void uart_poll_dma_tx(uint8_t uart_id)
{
   uint16_t size = 0;
 
 if (0x01 == s_uart_dev[uart_id].status)
    {
        return;
    }
 size = fifo_read(&s_uart_dev[uart_id].tx_fifo, s_uart_dev[uart_id].dmatx_buf,
      s_uart_dev[uart_id].dmatx_buf_size);
 if (size != 0)
 {
        s_UartTxRxCount[uart_id*2+0] += size;
    if (uart_id == 0)
  {
            s_uart_dev[uart_id].status = 0x01; /* DMA发送状态 */
     bsp_uart1_dmatx_config(s_uart_dev[uart_id].dmatx_buf, size);
  }
  else if (uart_id == 1)
  {
            s_uart_dev[uart_id].status = 0x01; /* DMA发送状态,必须在使能DMA传输前置位,否则有可能DMA已经传输并进入中断 */
   bsp_uart2_dmatx_config(s_uart_dev[uart_id].dmatx_buf, size);
  }
 }
}
- 
注意发送状态标识,必须先置为“发送状态”,然后启动DMA 传输。如果步骤反过来,在传输数据量少时,DMA传输时间短, “DMA_IT_TC”中断可能比“发送状态标识置位”先执行,导致程序误判DMA一直处理发送状态(发送标识无法被清除)。
注:关于DMA发送数据启动函数,有些博客文章描述只需改变DMA发送buf的大小即可;经过测试发现,该方法在发送数据量较小时可行,数据量大后,导致发送失败,而且不会触发DMA发送完成中断。因此,可靠办法是:每次启动DMA发送,重新配置DMA通道所有参数。该步骤只是配置寄存器过程,实质上不会占用很多CPU执行时间。
DMA传输完成中断处理函数:
void uart_dmatx_done_isr(uint8_t uart_id)
{
  s_uart_dev[uart_id].status = 0; /* 清空DMA发送状态标识 */
}
上述串口发送处理函数可以在几种情况调用:
- 
主线程任务调用,前提是线程不能被其他任务阻塞,否则导致fifo溢出 
void thread(void)
{
    uart_poll_dma_tx(DEV_UART1);
    uart_poll_dma_tx(DEV_UART2);
}
- 
定时器中断中调用 
void TIMx_IRQHandler(void)
{
    uart_poll_dma_tx(DEV_UART1);
    uart_poll_dma_tx(DEV_UART2);
}
- 
DMA通道传输完成中断中调用 
void DMA1_Channel4_5_IRQHandler(void)
{
 if(DMA_GetITStatus(DMA1_IT_TC4))
 {
  UartDmaSendDoneIsr(UART_2);
  DMA_ClearFlag(DMA1_FLAG_TC4);
  uart_poll_dma_tx(DEV_UART2);
 }
}
每次拷贝多少数据量到DMA发送buf:
关于这个问题,与具体应用场景有关,遵循的原则就是:只要发送fifo的数据量大于等于DMA发送buf的大小,就应该填满DMA发送buf,然后启动DMA传输,这样才能充分发挥会DMA性能。
因此,需兼顾每次DMA传输的效率和串口数据流实时性,参考着几类实现:
- 
周期查询发送fifo数据,启动DMA传输,充分利用DMA发送效率,但可能降低串口数据流实时性 
- 
实时查询发送fifo数据,加上超时处理,理想的方法 
- 
在DMA传输完成中断中处理,保证实时连续数据流 
7 串口设备
7.1 数据结构
/* 串口设备数据结构 */
typedef struct
{
 uint8_t status;   /* 发送状态 */
 _fifo_t tx_fifo;  /* 发送fifo */
 _fifo_t rx_fifo;  /* 接收fifo */
 uint8_t *dmarx_buf;  /* dma接收缓存 */
 uint16_t dmarx_buf_size;/* dma接收缓存大小*/
 uint8_t *dmatx_buf;  /* dma发送缓存 */
 uint16_t dmatx_buf_size;/* dma发送缓存大小 */
 uint16_t last_dmarx_size;/* dma上一次接收数据大小 */
}uart_device_t;
7.2 对外接口
左右滑动查看全部代码>>>
/* 串口注册初始化函数 */
void uart_device_init(uint8_t uart_id)
{
   if (uart_id == 1)
 {
  /* 配置串口2收发fifo */
  fifo_register(&s_uart_dev[uart_id].tx_fifo, &s_uart2_tx_buf[0], 
                      sizeof(s_uart2_tx_buf), fifo_lock, fifo_unlock);
  fifo_register(&s_uart_dev[uart_id].rx_fifo, &s_uart2_rx_buf[0], 
                      sizeof(s_uart2_rx_buf), fifo_lock, fifo_unlock);
  
  /* 配置串口2 DMA收发buf */
  s_uart_dev[uart_id].dmarx_buf = &s_uart2_dmarx_buf[0];
  s_uart_dev[uart_id].dmarx_buf_size = sizeof(s_uart2_dmarx_buf);
  s_uart_dev[uart_id].dmatx_buf = &s_uart2_dmatx_buf[0];
  s_uart_dev[uart_id].dmatx_buf_size = sizeof(s_uart2_dmatx_buf);
  bsp_uart2_dmarx_config(s_uart_dev[uart_id].dmarx_buf, 
          sizeof(s_uart2_dmarx_buf));
  s_uart_dev[uart_id].status  = 0;
 }
}
/* 串口发送函数 */
uint16_t uart_write(uint8_t uart_id, const uint8_t *buf, uint16_t size)
{
 return fifo_write(&s_uart_dev[uart_id].tx_fifo, buf, size);
}
/* 串口读取函数 */
uint16_t uart_read(uint8_t uart_id, uint8_t *buf, uint16_t size)
{
 return fifo_read(&s_uart_dev[uart_id].rx_fifo, buf, size);
}
8 相关文章
依赖的fifo参考该文章:
通用环形缓冲区模块:
https://acuity.blog.csdn.net/article/details/78902689
9 完整源码
代码仓库:
https://github.com/Prry/stm32f0-uart-dma
串口&DMA底层配置:
左右滑动查看全部代码>>>
#include 压力测试:
- 
1.5Mbps波特率,串口助手每毫秒发送1k字节数据,stm32f0 DMA接收数据,再通过DMA发送回串口助手,毫无压力。 
- 
1.5Mbps波特率,可传输大文件测试,将接收数据保存为文件,与源文件比较。 
- 
串口高波特率测试需要USB转TLL工具及串口助手都支持才可行,推荐CP2102、FT232芯片的USB转TTL工具。 

1.5Mbps串口回环压力测试
原文链接:https://blog.csdn.net/qq_20553613/article/details/108367512
以上就是良许教程网为各位朋友分享的Linu系统相关内容。想要了解更多Linux相关知识记得关注公众号“良许Linux”,或扫描下方二维码进行关注,更多干货等着你 !

 
		 微信扫一扫打赏
			    	微信扫一扫打赏
			     支付宝扫一扫打赏
			    	支付宝扫一扫打赏	
			    

.png) 
		        