良许Linux教程网 干货合集 裸机中环形队列与RTOS中消息队列的区别

裸机中环形队列与RTOS中消息队列的区别

“环形队列”和“消息队列”是在嵌入式领域广泛应用的两种数据结构。对于有经验的嵌入式软件工程师来说,这两种数据结构并不陌生。

然而,经常会有一些初学者提出与这些相关的问题。今天我将分享关于“环形队列”和“消息队列”的内容。

环形队列

环形队列是一个非常有用的数据结构,它是一种首尾相连的FIFO(先进先出)数据结构,采用数组的线性空间。它的数据组织简单,可以快速判断队列是否为空或已满,并且能以很快的速度存取数据。

在通信领域,特别是在UART、USB、CAN、网络等方面,环形队列经常被使用。

1. 环形队列的实现原理

由于内存中没有环形的结构,因此环形队列实际上是通过数组的线性空间来实现的。当数据到达队列尾部时,它会回到数组的起始位置继续存储。

因此,环形队列的逻辑是将数组元素q[0]与q[MAXN-1]连接起来,形成一个环形的存放队列的空间。

为了方便读写操作,需要使用数组下标来指示队列的读写位置。其中,head指向可读的位置,tail指向可写的位置。

image-20240114183855446
image-20240114183855446

环形队列的关键是判断队列为空,还是为满。当tail追上head时,队列为满时;当head追上tail时,队列为空。但如何知道谁追上谁,还需要一些辅助的手段来判断.

如何判断环形队列为空,为满有两种判断方法:

a.附加一个标志位tag

  • 当head赶上tail,队列空,则令tag=0
  • 当tail赶上head,队列满,则令tag=1

b.限制tail赶上head,即队尾结点与队首结点之间至少留有一个元素的空间。

  • 队列空: head==tail
  • 队列满: (tail+1)% MAXN ==head

2.附加标志实现原理

a.采用第一个环形队列有如下结构:

typedef struct ringq{
   int head; /* 头部,出队列方向*/
   int tail; /* 尾部,入队列方向*/ 
   int tag ;
   int size ; /* 队列总尺寸 */
   int space[RINGQ_MAX]; /* 队列空间 */
}RINGQ;

初始化状态:

q->head = q->tail = q->tag = 0;

队列为空:

( q->head == q->tail) && (q->tag == 0)

队列为满 :

 ((q->head == q->tail) && (q->tag == 1))

入队操作,如队列不满,则写入:

q->tail =  (q->tail + 1) % q->size ;

出队操作,如果队列不空,则从head处读出。

下一个可读的位置在:

q->head =  (q->head + 1) % q->size

b.完整代码

头文件ringq.h:

#ifndef __RINGQ_H__
#define __RINGQ_H__

#ifdef __cplusplus
extern "C" {
#endif 

#define QUEUE_MAX 20

typedef struct ringq{
   int head; /* 头部,出队列方向*/
   int tail; /* 尾部,入队列方向*/ 
   int tag ; /* 为空还是为满的标志位*/
    int size ; /* 队列总尺寸 */
   int space[QUEUE_MAX]; /* 队列空间 */
}RINGQ;

/* 
  第一种设计方法:
     当head == tail 时,tag = 0 为空,等于 = 1 为满。
*/

extern int ringq_init(RINGQ * p_queue);

extern int ringq_free(RINGQ * p_queue);


/* 加入数据到队列 */
extern int ringq_push(RINGQ * p_queue,int data);

/* 从队列取数据 */
extern int ringq_poll(RINGQ * p_queue,int *p_data);


#define ringq_is_empty(q) ( (q->head == q->tail) && (q->tag == 0))

#define ringq_is_full(q) ( (q->head == q->tail) && (q->tag == 1))

#define print_ringq(q) printf("ring head %d,tail %d,tag %d\n", q->head,q->tail,q->tag);
#ifdef __cplusplus
}
#endif 

#endif /* __RINGQ_H__ */

源代码 ringq.c:

#include 
#include "ringq.h"

int ringq_init(RINGQ * p_queue)
{
   p_queue->size = QUEUE_MAX ;

   p_queue->head = 0;
   p_queue->tail = 0;

   p_queue->tag = 0;

   return 0;
}

int ringq_free(RINGQ * p_queue)
{
  return 0;
}


int ringq_push(RINGQ * p_queue,int data)
{
  print_ringq(p_queue);

  if(ringq_is_full(p_queue))
   {

     printf("ringq is full\n");
     return -1;
   }

   p_queue->space[p_queue->tail] = data;

   p_queue->tail = (p_queue->tail + 1) % p_queue->size ;

   /* 这个时候一定队列满了*/
   if(p_queue->tail == p_queue->head)
    {
       p_queue->tag = 1;
    }

    return p_queue->tag ;  
}

int ringq_poll(RINGQ * p_queue,int * p_data)
{
   print_ringq(p_queue);
  if(ringq_is_empty(p_queue))
   {

      printf("ringq is empty\n");
     return -1;
   }

   *p_data = p_queue->space[p_queue->head];

   p_queue->head = (p_queue->head + 1) % p_queue->size ;

    /* 这个时候一定队列空了*/
   if(p_queue->tail == p_queue->head)
    {
       p_queue->tag = 0;
    }    
    return p_queue->tag ;
}

看到源代码,相信大家就明白其中原理了。其实还有不采用tag,或者其他一些标志的方法,这里就不进一步展开讲述了,感兴趣的读者可以自行研究一下。

消息队列

在RTOS中基本都有消息队列这个组件,也是使用最常见的组件之一。

1.消息队列的基本概念

消息队列是一种常用于任务间通信的数据结构,队列可以在任务与任务间、中断和任务间传递信息,实现了任务接收来自其他任务或中断的不固定长度的消息。

通过消息队列服务,任务或中断服务程序可以将一条或多条消息放入消息队列中。同样,一个或多个任务可以从消息队列中获得消息。

使用消息队列数据结构可以实现任务异步通信工作。

2.消息队列的特性

RTOS消息队列,常见特性:

  • 消息支持先进先出方式排队,支持异步读写工作方式。
  • 读写队列均支持超时机制。
  • 消息支持后进先出方式排队,往队首发送消息(LIFO)。
  • 可以允许不同长度(不超过队列节点最大值)的任意类型消息。
  • 一个任务能够从任意一个消息队列接收和发送消息。
  • 多个任务能够从同一个消息队列接收和发送消息。
  • 当队列使用结束后,可以通过删除队列函数进行删除。

3.消息队列的原理

这里以 FreeRTOS 为例进行说明。FreeRTOS 的消息队列控制块由多个元素组成,当消息队列被创建时,系统会为控制块分配对应的内存空间,用于保存消息队列的一些信息如消息的存储位置,头指针 pcHead、尾指针 pcTail、消息大小 uxItemSize 以及队列长度 uxLength 等

image-20240114183944620
image-20240114183944620

比如创建消息队列:

xQueue = xQueueCreate(QUEUE_LEN, QUEUE_SIZE);

任务或者中断服务程序都可以给消息队列发送消息,当发送消息时,如果队列未满或者允许覆盖入队,FreeRTOS 会将消息拷贝到消息队列队尾,否则,会根据用户指定的阻塞超时时间进行阻塞,在这段时间中,如果队列一直不允许入队,该任务将保持阻塞状态以等待队列允许入队。当其它任务从其等待的队列中读取入了数据(队列未满),该任务将自动由阻塞态转移为就绪态。当等待的时间超过了指定的阻塞时间,即使队列中还不允许入队,任务也会自动从阻塞态转移为就绪态,此时发送消息的任务或者中断程序会收到一个错误码 errQUEUE_FULL。

发送紧急消息的过程与发送消息几乎一样,唯一的不同是,当发送紧急消息时, 发送的位置是消息队列队头而非队尾,这样,接收者就能够优先接收到紧急消息,从而及时进行消息处理。

当某个任务试图读一个队列时,其可以指定一个阻塞超时时间。在这段时间中,如果队列为空,该任务将保持阻塞状态以等待队列数据有效。当其它任务或中断服务程序往其等待的队列中写入了数据,该任务将自动由阻塞态转移为就绪态。当等待的时间超过了指定的阻塞时间,即使队列中尚无有效数据,任务也会自动从阻塞态转移为就绪态。

当消息队列不再被使用时,应该删除它以释放系统资源,一旦操作完成, 消息队列将被永久性的删除。

消息队列的运作过程具体见下图:

image-20240114183948874
image-20240114183948874

4.消息队列的阻塞机制

出队阻塞:当且仅当消息队列有数据的时候,任务才能读取到数据,可以指定等待数据的阻塞时间。

入队阻塞:当且仅当队列允许入队的时候,发送者才能成功发送消息;队列中无可用消息空间时,说明消息队列已满,此时,系统会根据用户指定的阻塞超时时间将任务阻塞。

假如有多个任务阻塞在一个消息队列中,那么这些阻塞的任务将按照任务优先级进行排序,优先级高的任务将优先获得队列的访问权。

“环形队列”和“消息队列”的异同

通过以上分析,你会发现“环形队列”和“消息队列”之间有很多共同点:

1.他们都是一种数据结构,结构中都包含头、尾、标志等信息;

2.它们都是分配一块连续的内存空间,且都可以分配多个队列。

3.应用场景类似,有大量吞吐数据的情况下,比如通信领域。

当然,他们也有一些不同点:

1.“环形队列”可以独立使用,也可以结合操作系统使用。而消息队列依赖RTOS(有些RTOS的参数信息)。

2.“环形队列”占用资源更小,更适合于资源较小的系统中。

3.“消息队列”结合RTOS应用更加灵活,比如延时、中断传输数据等。

最后,这两种队列应用都比较广,建议抽空都研究一下。

以上就是良许教程网为各位朋友分享的Linu系统相关内容。想要了解更多Linux相关知识记得关注公众号“良许Linux”,或扫描下方二维码进行关注,更多干货等着你 !

137e00002230ad9f26e78-265x300
本文由 良许Linux教程网 发布,可自由转载、引用,但需署名作者且注明文章出处。如转载至微信公众号,请在文末添加作者公众号二维码。
良许

作者: 良许

良许,世界500强企业Linux开发工程师,公众号【良许Linux】的作者,全网拥有超30W粉丝。个人标签:创业者,CSDN学院讲师,副业达人,流量玩家,摄影爱好者。
上一篇
下一篇

发表评论

联系我们

联系我们

公众号:良许Linux

在线咨询: QQ交谈

邮箱: yychuyu@163.com

关注微信
微信扫一扫关注我们

微信扫一扫关注我们

关注微博
返回顶部