良许Linux教程网 干货合集 Linux中部署Hadoop集群具体步骤

Linux中部署Hadoop集群具体步骤

Hadoop 是一个分布式系统基础架构,由Apache基金会开发。用户可以在不了解分布式底层细节的情况下,开发分布式程序。充分利用集群的威力高速运算和存储,本篇文章重点为大家讲解一下Linux中部署Hadoop集群具体步骤。

img

一、Hadoop框架简介

Hadoop的框架最核心的设计就是:HDFS和MapReduce。HDFS为海量的数据提供了存储,则MapReduce为海量的数据提供了计算。

HDFS(Hadoop Distribution File System),称为Hadoop分布式文件系统,主要特点:

HDFS最小以64MB的数据块存储文件,相比其他文件系统中的4KB~32KB分块大得多。

HDFS在时延的基础上对吞吐量进行了优化,它能够高效处理了对大文件的读请求流,但不擅长对众多小文件的定位请求

HDFS对普通的“一次写入,多次读取”的工作负载进行了优化。

每个存储节点运行着一个称为DataNode的进程,它管理着相应主机上的所有数据块。这些存储节点都由一个称为NameNode的主进程来协调,该进程运行于一台独立进程上。

与磁盘阵列中设置物理冗余来处理磁盘故障或类似策略不同,HDFS使用副本来处理故障,每个由文件组成的数据块存储在集群众的多个节点,HDFS的NameNode不断监视各个DataNode发来的报告。

1、MapReduce工作原理

客户端,提交MapReduce作业;jobtracker,协调作业的运行,jobtracker是一个java应用程序,它的主类是JobTracker;tasktracker。运行作业划分后的任务,tasktracker是一个java应用程序,TaskTracker是主类。

2、Hadoop优点

Hadoop是一个能够让用户轻松架构和使用的分布式计算平台。用户可以轻松地在Hadoop上开发和运行处理海量数据的应用程序。它主要有以下几个优点:

高可靠性:Hadoop按位存储和处理数据的能力值得人们信赖。

高扩展性:Hadoop是在可用的计算机集簇间分配数据并完成计算任务的,这些集簇可以方便地扩展到数以千计的节点中。

高效性:Hadoop能够在节点之间动态地移动数据,并保证各个节点的动态平衡,因此处理速度非常快。

高容错性:Hadoop能够自动保存数据的多个副本,并且能够自动将失败的任务重新分配。

低成本:与一体机、商用数据仓库以及QlikView、Yonghong Z-Suite等数据集市相比,hadoop是开源的,项目的软件成本因此会大大降低。

Hadoop带有用Java语言编写的框架,因此运行在 Linux 生产平台上是非常理想的。Hadoop 上的应用程序也可以使用其他语言编写,比如 C++。

Hadoop官网:http://hadoop.apache.org/

二、先决条件

保持Hadoop集群每个节点配置环境一致,安装java,配置ssh。

实验环境:

Platform:xen vm

OS: CentOS 6.8

Software: hadoop-2.7.3-src.tar.gz, jdk-8u101-linux-x64.rpm

Hostname IP Address OS version Hadoop role Node role
linux-node1 192.168.0.89 CentOS 6.8 Master namenode
linux-node2 192.168.0.90 CentOS 6.8 Slave datenode
linux-node3 192.168.0.91 CentOS 6.8 Slave datenode
linux-node4 192.168.0.92 CentOS 6.8 Slave datenode

#把需要的软件包下载下来上传到集群的各个节点上

三、集群的构架和安装

1、Hosts文件设置

#Hadoop集群中的每个节点的hosts文件都需要修改

[root@linux-node1 ~]# cat /etc/hosts
127.0.0.1   localhost localhost.localdomain linux-node1
192.168.0.89 linux-node1
192.168.0.90 linux-node2
192.168.0.91 linux-node3
192.168.0.92 linux-node4

2、安装java

#提前把下载好的JDK(rpm包)上传到服务器上,然后安装

rpm -ivh jdk-8u101-linux-x64.rpm
export JAVA_HOME=/usr/java/jdk1.8.0_101/
export PATH=$JAVA_HOME/bin:$PATH
# java -version
java version "1.8.0_101"
Java(TM) SE Runtime Environment (build 1.8.0_101-b13)
Java HotSpot(TM) 64-Bit Server VM (build 25.101-b13, mixed mode)

3、安装hadoop

#创建hadoop用户,设置使用sudo

[root@linux-node1 ~]# useradd hadoop && echo hadoop | passwd --stdin hadoop
[root@linux-node1 ~]# echo "hadoopALL=(ALL) NOPASSWD:ALL" >> /etc/sudoers
[root@linux-node1 ~]# su - hadoop
[hadoop@linux-node1 ~]$ cd /usr/local/src/
[hadoop@linux-node1src]$wget http://apache.fayea.com/hadoop/common/hadoop-2.7.3/hadoop-2.7.3.tar.gz
[hadoop@linux-node1 src]$ sudo tar zxvf hadoop-2.7.3.tar.gz -C /home/hadoop/ && cd /home/hadoop
[hadoop@linux-node1 home/hadoop]$ sudo mv hadoop-2.7.3/ hadoop
[hadoop@linux-node1 home/hadoop]$ sudo chown -R hadoop:hadoop hadoop/

#将hadoop的二进制目录添加到PATH变量,并设置HADOOP_HOME环境变量

[hadoop@linux-node1 home/hadoop]$ export HADOOP_HOME=/home/hadoop/hadoop/
[hadoop@linux-node1 home/hadoop]$ export PATH=$HADOOP_HOME/bin:$PATH

4、创建hadoop相关目录

[hadoop@linux-node1 ~]$ mkdir -p /home/hadoop/dfs/{name,data}
[hadoop@linux-node1 ~]$ mkdir -p /home/hadoop/tmp

#节点存储数据备份目录

sudo mkdir -p /data/hdfs/{name,data}
sudo chown -R hadoop:hadoop /data/

#上述操作需在hadoop集群的每个节点都操作

5、SSH配置

#设置集群主节点免密码登陆其他节点

[hadoop@linux-node1 ~]$ ssh-keygen -t rsa
[hadoop@linux-node1 ~]$ ssh-copy-id linux-node1@192.168.0.90
[hadoop@linux-node1 ~]$ ssh-copy-id linux-node2@192.168.0.91
[hadoop@linux-node1 ~]$ ssh-copy-id linux-node3@192.168.0.92
实战CentOS系统部署Hadoop集群服务实战CentOS系统部署Hadoop集群服务
实战CentOS系统部署Hadoop集群服务实战CentOS系统部署Hadoop集群服务

#测试ssh登录 实战CentOS系统部署Hadoop集群服务实战CentOS系统部署Hadoop集群服务

6、修改hadoop的配置文件

文件位置:/home/hadoop/hadoop/etc/hadoop,文件名称:hadoop-env.sh、yarn-evn.sh、slaves、core-site.xml、hdfs-site.xml、mapred-site.xml、 yarn-site.xml

(1)配置hadoop-env.sh文件

#在hadoop安装路径下,进入hadoop/etc/hadoop/目录并编辑hadoop-env.sh,修改JAVA_HOME为JAVA的安装路径

[hadoop@linux-node1 home/hadoop]$ cd hadoop/etc/hadoop/
[hadoop@linux-node1 hadoop]$ egrep JAVA_HOME hadoop-env.sh
# The only required environment variable is JAVA_HOME.  All others are
# set JAVA_HOME in this file, so that it is correctly defined on
#export JAVA_HOME=${JAVA_HOME}
export JAVA_HOME=/usr/java/jdk1.8.0_101/

(2)配置yarn.sh文件

指定yran框架的java运行环境,该文件是yarn框架运行环境的配置文件,需要修改JAVA_HOME的位置。

[hadoop@linux-node1 hadoop]$ grep JAVA_HOME yarn-env.sh
# export JAVA_HOME=/home/y/libexec/jdk1.6.0/
export JAVA_HOME=/usr/java/jdk1.8.0_101/

(3)配置slaves文件

指定DataNode数据存储服务器,将所有的DataNode的机器的主机名写入到此文件中,如下:

[hadoop@linux-node1 hadoop]$ cat slaves
linux-node2
linux-node3
linux-node4

Hadoop 3种运行模式

本地独立模式:Hadoop的所有组件,如NameNode,DataNode,Jobtracker,Tasktracker都运行在一个java进程中。

伪分布式模式:Hadoop的各个组件都拥有一个单独的Java虚拟机,它们之间通过网络套接字通信。

完全分布式模式:Hadoop分布在多台主机上,不同的组件根据工作性质的不同安装在不通的Guest上。

#配置完全分布式模式

(4)修改core-site.xml文件,添加红色区域的代码,注意蓝色标注的内容

fs.default.namehdfs://linux-node1:9000io.file.buffer.size131072hadoop.tmp.dirfile:/home/hadoop/tmpAbase for other temporary directories.

(5)修改hdfs-site.xml文件

dfs.namenode.secondary.http-addresslinux-node1:9001# 通过web界面来查看HDFS状态 dfs.namenode.name.dirfile:/home/hadoop/dfs/namedfs.datanode.data.dirfile:/home/hadoop/dfs/datadfs.replication2# 每个Block有2个备份dfs.webhdfs.enabledtrue

(6)修改mapred-site.xml

这个是mapreduce任务的配置,由于hadoop2.x使用了yarn框架,所以要实现分布式部署,必须在mapreduce.framework.name属性下配置为yarn。mapred.map.tasks和mapred.reduce.tasks分别为map和reduce的任务数。

[hadoop@linux-node1 hadoop]$ cp mapred-site.xml.template mapred-site.xml
mapreduce.framework.nameyarnmapreduce.jobhistory.addresslinux-node1:10020mapreduce.jobhistory.webapp.addresslinux-node1:19888

(7)配置节点yarn-site.xml

#该文件为yarn架构的相关配置

"1.0"?>

mapred.child.java.opts-Xmx400m"1.0"?>

yarn.nodemanager.aux-servicesmapreduce_shuffleyarn.nodemanager.aux-services.mapreduce.shuffle.classorg.apache.hadoop.mapred.ShuffleHandleryarn.resourcemanager.addresslinux-node1:8032yarn.resourcemanager.scheduler.addresslinux-node1:8030yarn.resourcemanager.resource-tracker.addresslinux-node1:8031yarn.resourcemanager.admin.addresslinux-node1:8033yarn.resourcemanager.webapp.addresslinux-node1:8088yarn.nodemanager.resource.memory-mb8192

7、复制hadoop到其他节点

scp -r /home/hadoop/hadoop/ 192.168.0.90:/home/hadoop/
scp -r /home/hadoop/hadoop/ 192.168.0.91:/home/hadoop/
scp -r /home/hadoop/hadoop/ 192.168.0.92:/home/hadoop/

8、在linux-node1使用hadoop用户初始化NameNode

/home/hadoop/hadoop/bin/hdfs namenode –format
实战CentOS系统部署Hadoop集群服务实战CentOS系统部署Hadoop集群服务
实战CentOS系统部署Hadoop集群服务实战CentOS系统部署Hadoop集群服务
#echo $?
#sudo yum –y install tree
# tree /home/hadoop/dfs
实战CentOS系统部署Hadoop集群服务实战CentOS系统部署Hadoop集群服务
实战CentOS系统部署Hadoop集群服务实战CentOS系统部署Hadoop集群服务

9、启动hadoop

/home/hadoop/hadoop/sbin/start-dfs.sh
/home/hadoop/hadoop/sbin/stop-dfs.sh
实战CentOS系统部署Hadoop集群服务实战CentOS系统部署Hadoop集群服务
实战CentOS系统部署Hadoop集群服务实战CentOS系统部署Hadoop集群服务

#namenode节点上面查看进程

ps aux | grep --color namenode
实战CentOS系统部署Hadoop集群服务实战CentOS系统部署Hadoop集群服务
实战CentOS系统部署Hadoop集群服务实战CentOS系统部署Hadoop集群服务

#DataNode上面查看进程

ps aux | grep --color datanode

实战CentOS系统部署Hadoop集群服务实战CentOS系统部署Hadoop集群服务实战CentOS系统部署Hadoop集群服务实战CentOS系统部署Hadoop集群服务实战CentOS系统部署Hadoop集群服务实战CentOS系统部署Hadoop集群服务

10、启动yarn分布式计算框架

[hadoop@linux-node1 .ssh]$ /home/hadoop/hadoop/sbin/start-yarn.sh starting yarn daemons

实战CentOS系统部署Hadoop集群服务实战CentOS系统部署Hadoop集群服务 #NameNode节点上查看进程 实战CentOS系统部署Hadoop集群服务实战CentOS系统部署Hadoop集群服务

ps aux | grep --color resourcemanager

#DataNode节点上查看进程 实战CentOS系统部署Hadoop集群服务实战CentOS系统部署Hadoop集群服务

ps aux | grep --color nodemanager

注:start-dfs.sh和start-yarn.sh这两个脚本可用start-all.sh代替

/home/hadoop/hadoop/sbin/stop-all.sh
/home/hadoop/hadoop/sbin/start-all.sh
实战CentOS系统部署Hadoop集群服务实战CentOS系统部署Hadoop集群服务
实战CentOS系统部署Hadoop集群服务实战CentOS系统部署Hadoop集群服务

11、启动jobhistory服务,查看mapreduce状态

#在NameNode节点上

[hadoop@linux-node1 ~]$ /home/hadoop/hadoop/sbin/mr-jobhistory-daemon.sh start historyserver
starting historyserver, logging to /home/hadoop/hadoop/logs/mapred-hadoop-historyserver-linux-node1.out

12、查看HDFS分布式文件系统状态

/home/hadoop/hadoop/bin/hdfs dfsadmin –report
实战CentOS系统部署Hadoop集群服务实战CentOS系统部署Hadoop集群服务
实战CentOS系统部署Hadoop集群服务实战CentOS系统部署Hadoop集群服务

#查看文件块组成,一个文件由那些块组成

/home/hadoop/hadoop/bin/hdfs fsck / -files -blocks
实战CentOS系统部署Hadoop集群服务实战CentOS系统部署Hadoop集群服务
实战CentOS系统部署Hadoop集群服务实战CentOS系统部署Hadoop集群服务

13、web页面查看hadoop集群状态

查看HDFS状态:http://192.168.0.89:50070/ 实战CentOS系统部署Hadoop集群服务实战CentOS系统部署Hadoop集群服务实战CentOS系统部署Hadoop集群服务实战CentOS系统部署Hadoop集群服务查看Hadoop集群状态:http://192.168.0.89:8088/ 实战CentOS系统部署Hadoop集群服务实战CentOS系统部署Hadoop集群服务以上就是良许教程网为各位朋友分享的Linux系统相关内容。想要了解更多Linux相关知识记得关注公众号“良许Linux”,或扫描下方二维码进行关注,更多干货等着你 !

img
本文由 良许Linux教程网 发布,可自由转载、引用,但需署名作者且注明文章出处。如转载至微信公众号,请在文末添加作者公众号二维码。
良许

作者: 良许

良许,世界500强企业Linux开发工程师,公众号【良许Linux】的作者,全网拥有超30W粉丝。个人标签:创业者,CSDN学院讲师,副业达人,流量玩家,摄影爱好者。
上一篇
下一篇

发表评论

邮箱地址不会被公开。 必填项已用*标注

联系我们

联系我们

公众号:良许Linux

在线咨询: QQ交谈

邮箱: yychuyu@163.com

关注微信
微信扫一扫关注我们

微信扫一扫关注我们

关注微博
返回顶部