良许Linux教程网 干货合集 嵌入式开发神器:硬件外设访问库

嵌入式开发神器:硬件外设访问库

今天我要向大家介绍的是一个名为c-periphery的开源软件,它是一个用C语言编写的硬件外设访问库。

该软件的开源地址为:

https://github.com/vsergeev/c-periphery

通过c-periphery,我们可以轻松地进行串口、SPI、I2C等外设的读写操作,这使得它非常适用于嵌入式产品的开发。

借助于这个优秀的代码框架,我们可以不断地扩展出更多的功能模块,最终构建出适用于我们产品的自定义Linux硬件抽象层。

源文件:

$ tree .
├── src
│   ├── gpio.c
│   ├── gpio.h
│   ├── i2c.c
│   ├── i2c.h
│   ├── led.c
│   ├── led.h
│   ├── mmio.c
│   ├── mmio.h
│   ├── pwm.c
│   ├── pwm.h
│   ├── serial.c
│   ├── serial.h
│   ├── spi.c
│   ├── spi.h
│   ├── version.c
│   └── version.h

约 4500 行代码,每个硬件模块的代码都是相对独立,上手难度小。

**能收获什么?

**1、降低硬件编程的门槛;

2、了解 Linux 应用层如何访问 GPIO / I2C / SPI / PWM 等硬件;

3、了解如何对硬件外设进行封装,并提供良好的 API;

4、了解如何将代码封装成库;

5、了解如何为代码编写单元测试程序;

c-periphery 很好地示范了如何在 Linux 平台上进行硬件编程,定义出来的接口即丰富又实用。

另外,它最终输出的是静态库 libperiphery.a,并且为每一个硬件模块功能都编写了单元测试代码,代码质量有保障。

c-periphery 的用法

简单例子

我们以最常见的串口读写为例:

int main(void)
{
    serial_t *serial;
    uint8_t s[] = "Hello World!";
    uint8_t buf[128];
    int ret;

    serial = serial_new();

    /* Open /dev/ttyUSB0 with baudrate 115200, and defaults of 8N1, no flow control */
    if (serial_open(serial, "/dev/ttyUSB0", 115200) "serial_open(): %s\n", serial_errmsg(serial));
        exit(1);
    }

    /* Write to the serial port */
    if (serial_write(serial, s, sizeof(s)) "serial_write(): %s\n", serial_errmsg(serial));
        exit(1);
    }

    /* Read up to buf size or 2000ms timeout */
    if ((ret = serial_read(serial, buf, sizeof(buf), 2000)) "serial_read(): %s\n", serial_errmsg(serial));
        exit(1);
    }
    printf("read %d bytes: _%s_\n", ret, buf);
    serial_close(serial);
    serial_free(serial);

    return 0;
}

serial_t 是对串口设备的抽象;

serial_new() 用于创建一个串口设备, 这里只是申请了数据,使用完毕后, 要通过 serial_free() 将其释放掉。

serial_open() 用于初始化串口,设置设备节点、波特率等; 相应地,用 serial_close() 可以关闭串口。

serial_write() 用于给串口发数据,模仿了系统调用 write()。

serial_read() 用于从串口读数据,比系统调用 read() 多了一个 timeout_ms 的参数,有了超时机制后,至少可以避免程序一直阻塞。

这就是一个最简单的基于 c-periphery 的串口示例。即便是嵌入式初学者,基于这些接口,也能轻松地读写串口了。

另外,这里只用到了最常用的几个 API。对于串口模块,c-periphery 还有很多实用的 API:

image-20240407005801527
image-20240407005801527

比较有意思的几个 API:

serial_poll() 类似 select(),用于监控串口是否有数据,避免死等;

serial_get/set_xxx() 用于读写串口的属性;

serial_fd() 用于获取文件描述符,有了 fd 就意味这所有 Linux 应用编程的机制都可以使用了。例如我们可以将这个 fd 传递给 libev,然后就能进行事件驱动编程了。

c-periphery 的实现

关键数据

c-periphery 里对每个硬件模块封装的方法都是类似,用一个结构体来保存模块所有相关的信息,看下面这几个例子。

Serial:

image-20240407005805783
image-20240407005805783

I2C:

image-20240407005808170
image-20240407005808170

GPIO:

image-20240407005812864
image-20240407005812864

它们的成员变量大多都有文件描述符 fd、用于记录错误状态的 errno / error string,然后再加上一些硬件模块特有的成员变量。

最终库的调用者只会看到 serial_t、i2c_t、gpio_t 这种类似描述符的数据类型,使用时不需要关心内部细节。

后续我们要添加自己的硬件模块时,可以依葫芦画瓢,模仿着定义出属于该硬件的 xxx_t 结构体,然后一步步地为 c-periphery 扩展出新的功能模块。

几个关键 API 的实现

我们以 Serial 为例,看下其核心 API 的实现。

分配与释放:

image-20240407005816767
image-20240407005816767

就是在申请分配和释放 serial_t 的内存。

写数据 serial_write() 就是调用 write(),读数据 serial_read() 则是利用 select() 实现了超时的功能:

image-20240407005820394
image-20240407005820394

serial_poll() 则是使用 poll() 来完成 io 监控。

其他硬件模块的实现都是类似的。

到此,c-periphery 的核心实现代码就拆解完毕了。

**
为 c-periphery 添加新的硬件模块
**学以致用,我们按照 c-periphery 的框架,添加背光 Backlight 功能。

Backlight 的控制方法可以参考这篇文章:一个控制背光的命令行小工具

先定义 backlight_t:

image-20240407005831326
image-20240407005831326

然后再实现好下面这些 API:

image-20240407005835539
image-20240407005835539

API 的具体实现代码就不再这里展示了,因为控制背光无非就是读写 /sys/class/backlight/ 内的文件节点,难度不大。

总结

c-periphery 是一个 C 语言编写的硬件访问库,已支持 Serial、I2C、SPI、MMIO、PWM、GPIO 等硬件。约 4500 行代码,每个硬件模块的代码都是相对独立,上手难度小,非常使用在嵌入式 Linux 平台上使用。

另外,我们可以基于它优秀的代码框架,不断地扩展出自己需要的功能模块,最终形成自己产品专用的 Linux 硬件抽象层,绝对的嵌入式开发的利器。

以上就是良许教程网为各位朋友分享的Linu系统相关内容。想要了解更多Linux相关知识记得关注公众号“良许Linux”,或扫描下方二维码进行关注,更多干货等着你 !

137e00002230ad9f26e78-265x300
本文由 良许Linux教程网 发布,可自由转载、引用,但需署名作者且注明文章出处。如转载至微信公众号,请在文末添加作者公众号二维码。
良许

作者: 良许

良许,世界500强企业Linux开发工程师,公众号【良许Linux】的作者,全网拥有超30W粉丝。个人标签:创业者,CSDN学院讲师,副业达人,流量玩家,摄影爱好者。
上一篇
下一篇

发表评论

联系我们

联系我们

公众号:良许Linux

在线咨询: QQ交谈

邮箱: yychuyu@163.com

关注微信
微信扫一扫关注我们

微信扫一扫关注我们

关注微博
返回顶部