良许Linux教程网 干货合集 求解算法时常用的分析思路

求解算法时常用的分析思路

学习算法最重要的就是算法的思路,本篇文章重点为大家讲解一下求解算法时的分析思路,有需要的小伙伴可以参考一下。

image-20211225124235400

分析框架

1、以算法输入规模n作为参数进行分析算法效率

2、时间复杂度:找出基本操作O(1),再计算它的运行次数(忽略乘法常量,仅关注增长次数)

3、增长次数:log2n

4、最差、平均和最佳效率均是指输入规模为n时候的效率(平均效率可以引用已知的推到结果)

主要概括分析框架:

1、算法的时间效率和空间效率都用输入规模的函数进行度量。

2、用算法的基本操作的执行次数来度量时间效率,用算法消耗的额外单位的数量来度量空间单位

3、在输入规模相同的情况下,有写算法的效率会有显著的差异,对于这类算法需要分析最差、平均和最佳效率

4、框架主要关心:输入规模趋向于无限大的情况下它的效率问题

渐近符号和基本效率类型

1、O(g(n))是增长次数

2、Ω(g(n))是增长次数 >= c*g(n)的函数集合,下阶

3、θ(g(n))是增长次数 = c*g(n)的函数集合,同阶

可以利用极限进行比较增长次数(洛必达法则)算法整体效率是由具有较大增长次数的部分所决定的。

非递归问题的数学分析的通用方案

1、决定哪个参数表示输入规模的度量标准

2、找出算法的基本操作

3、检查基本操作的执行次数是否只依赖于输入规模,如果它还依赖于一些其他的特性(例如:元素在数组中的位置等)则分析最差、平均和最佳效率

4、建立一个算法基本操作执行次数的求和表达式(有可能是递推表达式)

5、利用求和运算的标准运算或者法则来建立一个操作次数的闭合公式,或者至少确定它的增长次数

递归问题的数学分析的通用方案

1、决定哪个参数表示输入规模的度量标准

2、找出算法的基本操作

3、检查基本操作的执行次数是否只依赖于输入规模,如果它还依赖于一些其他的特性(例如:元素在数组中的位置等)则分析最差、平均和最佳效率

4、对于算法基本操作执行次数,建立一个递推关系以及相应的初始条件。

5、解这个递推式,或者至少确定它的增长次数。

以上就是良许教程网为各位朋友分享的Linu系统相关内容。想要了解更多Linux相关知识记得关注公众号“良许Linux”,或扫描下方二维码进行关注,更多干货等着你 !

img

本文由 良许Linux教程网 发布,可自由转载、引用,但需署名作者且注明文章出处。如转载至微信公众号,请在文末添加作者公众号二维码。
良许

作者: 良许

良许,世界500强企业Linux开发工程师,公众号【良许Linux】的作者,全网拥有超30W粉丝。个人标签:创业者,CSDN学院讲师,副业达人,流量玩家,摄影爱好者。
上一篇
下一篇

发表评论

邮箱地址不会被公开。 必填项已用*标注

联系我们

联系我们

公众号:良许Linux

在线咨询: QQ交谈

邮箱: yychuyu@163.com

关注微信
微信扫一扫关注我们

微信扫一扫关注我们

关注微博
返回顶部